All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Ważewski type theorem for non-autonomous systems of equations with a disconnected set of egress points

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F15%3APU114197" target="_blank" >RIV/00216305:26620/15:PU114197 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.sciencedirect.com/science/article/pii/S009630031500644X" target="_blank" >http://www.sciencedirect.com/science/article/pii/S009630031500644X</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.amc.2015.05.027" target="_blank" >10.1016/j.amc.2015.05.027</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Ważewski type theorem for non-autonomous systems of equations with a disconnected set of egress points

  • Original language description

    In this paper we study an asymptotic behaviour of solutions of nonlinear dynamic systems on time scales of the form $$y^{Delta}(t)=f(t,y(t)),$$ where $fcolonmathbb{T}timesmathbb{R}^nrightarrowmathbb{R}^n$, and $mathbb{T}$ is a time scale. For a given set $Omegasubsetmathbb{T}timesR^{n}$, we formulate conditions for function $f$ which guarantee that at least one solution $y$ of the above system stays in $Omega$. Unlike previous papers the set $Omega$ is considered in more general form, i.e., the time section $Omega_t$ is an arbitrary closed bounded set homeomorphic to the disk (for every $tinmathbb{T}$) and the boundary $partial_mathbb{T}Omega$ does not contain only egress points. Thanks to this, we can investigate a substantially wider range of equations with various types of bounded solutions. A relevant example is considered. The results are new also for non-autonomous systems of difference equations and the systems of impulsive differential equations.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    APPLIED MATHEMATICS AND COMPUTATION

  • ISSN

    0096-3003

  • e-ISSN

    1873-5649

  • Volume of the periodical

    265

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    12

  • Pages from-to

    358-369

  • UT code for WoS article

    000358787100031

  • EID of the result in the Scopus database

    2-s2.0-84930636383