Conformal Operators on Weighted Forms; Their Decomposition and Null Space on Einstein Manifolds.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F14%3A00073572" target="_blank" >RIV/00216224:14310/14:00073572 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00023-013-0258-4" target="_blank" >http://dx.doi.org/10.1007/s00023-013-0258-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00023-013-0258-4" target="_blank" >10.1007/s00023-013-0258-4</a>
Alternative languages
Result language
angličtina
Original language name
Conformal Operators on Weighted Forms; Their Decomposition and Null Space on Einstein Manifolds.
Original language description
There is a class of Laplacian like conformally invariant differential operators on differential forms $L^l_k$ which may be considered as the generalisation to differential forms of the conformally invariant powers of the Laplacian known as the Paneitz and GJMS operators. On conformally Einstein manifolds we give explicit formulae for these as factored polynomials in second-order differential operators. In the case that the manifold is not Ricci flat we use this to provide a direct sum decomposition of the null space of the $L^l_k$ in terms of the null spaces of mutually commuting second-order factors.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annales Henri Poincaré
ISSN
1424-0637
e-ISSN
—
Volume of the periodical
15
Issue of the periodical within the volume
4
Country of publishing house
CH - SWITZERLAND
Number of pages
27
Pages from-to
679-705
UT code for WoS article
000333111400003
EID of the result in the Scopus database
—