All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Conformal Operators on Weighted Forms; Their Decomposition and Null Space on Einstein Manifolds.

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F14%3A00073572" target="_blank" >RIV/00216224:14310/14:00073572 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s00023-013-0258-4" target="_blank" >http://dx.doi.org/10.1007/s00023-013-0258-4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00023-013-0258-4" target="_blank" >10.1007/s00023-013-0258-4</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Conformal Operators on Weighted Forms; Their Decomposition and Null Space on Einstein Manifolds.

  • Original language description

    There is a class of Laplacian like conformally invariant differential operators on differential forms $L^l_k$ which may be considered as the generalisation to differential forms of the conformally invariant powers of the Laplacian known as the Paneitz and GJMS operators. On conformally Einstein manifolds we give explicit formulae for these as factored polynomials in second-order differential operators. In the case that the manifold is not Ricci flat we use this to provide a direct sum decomposition of the null space of the $L^l_k$ in terms of the null spaces of mutually commuting second-order factors.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Annales Henri Poincaré

  • ISSN

    1424-0637

  • e-ISSN

  • Volume of the periodical

    15

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    27

  • Pages from-to

    679-705

  • UT code for WoS article

    000333111400003

  • EID of the result in the Scopus database