Conformal Operators on Forms and Detour Complexes on Einstein Manifolds
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F08%3A00027954" target="_blank" >RIV/00216224:14310/08:00027954 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Conformal Operators on Forms and Detour Complexes on Einstein Manifolds
Original language description
For even dimensional conformal manifolds several new conformally invariant objects were found recently: invariant differential complexes related to, but distinct from, the de Rham complex (these are elliptic in the case of Riemannian signature); the cohomology spaces of these; conformally stable form spaces that we may view as spaces of conformal harmonics; operators that generalise Branson's Q-curvature; global pairings between differential form bundles that descend to cohomology pairings. Here we showthat these operators, spaces, and the theory underlying them, simplify significantly on conformally Einstein manifolds. We give explicit formulae for all the operators concerned. The null spaces for these, the conformal harmonics, and the cohomology spaces are expressed explicitly in terms of direct sums of subspaces of eigenspaces of the form Laplacian. For the case of non-Ricci flat spaces this applies in all signatures and without topological restrictions. In the case of Riemannian s
Czech name
Konformní Operátory na Formách a Detour Komplexy na Einsteinovských Varietách
Czech description
Na konformních varietách sudé dimenze bylo nedávno nalezeno několik invariantních objektů: invariantní diferenciální komplexy (blízké de Rhamovským komplexů, ale různé od nich) eliptické pro Riemanovskou signaturu; jejich kohomologie; konformně invariantní prostory chápané jako konformní analogie harmonických prostorů; operátory zobecňující Bransononovu Q-křivost; globální párování mezi bandly diferenciálních forem, které indukují párování na kohomologiích. My ukážeme jak lze tyto operátory, prostory ateorie, která je studuje, zjednodušeně popsat na konformně Einsteinovských varietách. Ukážeme explicitní formule všech těchto operátorů. Popíšeme explicitně prostor jejich řešení - konformní harmonické formy - a příslušné kohomologie, vše pomocí přímýchsoučtů vchodných vlastních prostorů Laplacova operátoru na formách. Na varietách s nenulovou Ricciho křivostí toto platí pro všechny signatury bez topologických omezení. Pro Riemannovskou signaturu na kompaktních varietách toto vede k nov
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LC505" target="_blank" >LC505: Eduard Čech Center for Algebra and Geometry</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2008
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Communications in Mathematical Physics
ISSN
0010-3616
e-ISSN
—
Volume of the periodical
284
Issue of the periodical within the volume
2
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
25
Pages from-to
—
UT code for WoS article
000260065100001
EID of the result in the Scopus database
—