All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On Existence analysis of steady flows of generalized Newtonian fluids with concentration dependent power-law index

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10139892" target="_blank" >RIV/00216208:11320/13:10139892 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.jmaa.2012.12.066" target="_blank" >http://dx.doi.org/10.1016/j.jmaa.2012.12.066</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jmaa.2012.12.066" target="_blank" >10.1016/j.jmaa.2012.12.066</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On Existence analysis of steady flows of generalized Newtonian fluids with concentration dependent power-law index

  • Original language description

    We study a system of partial differential equations describing a steady flow of an incompressible generalized Newtonian fluid, wherein the Cauchy stress is concentration dependent. Namely, we consider a coupled system of the generalized Navier-Stokes equations and convection-diffusion equation with non-linear diffusivity. We prove the existence of a weak solution for certain class of models by using a generalization of the monotone operator theory which fits into the framework of generalized Sobolev spaces with variable exponent. Such a framework is involved since the function spaces, where we look for the weak solution, are "dependent" of the solution itself, and thus, we a priori do not know them. This leads us to the principal a priori assumptions on the model parameters that ensure the Wilder continuity of the variable exponent. We present here a constructive proof based on the Galerkin method that allows us to obtain the result for very general class of models.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F09%2F0917" target="_blank" >GA201/09/0917: Mathematical and computer analysis of the evolution processes in nonlinear viscoelastic fluid-like materials</a><br>

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Analysis and Applications

  • ISSN

    0022-247X

  • e-ISSN

  • Volume of the periodical

    402

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    10

  • Pages from-to

    157-166

  • UT code for WoS article

    000315836900014

  • EID of the result in the Scopus database