Universal Point Sets for Planar Three-Trees
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10145588" target="_blank" >RIV/00216208:11320/13:10145588 - isvavai.cz</a>
Result on the web
<a href="http://link.springer.com/chapter/10.1007%2F978-3-642-40104-6_30" target="_blank" >http://link.springer.com/chapter/10.1007%2F978-3-642-40104-6_30</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-40104-6_30" target="_blank" >10.1007/978-3-642-40104-6_30</a>
Alternative languages
Result language
angličtina
Original language name
Universal Point Sets for Planar Three-Trees
Original language description
For every n ELEMENT OF N, we present a set S(n) of O ( n^ 5 / 3 ) points in the plane such that every planar 3-tree with n vertices has a straight-line embedding in the plane in which the vertices are mapped to a subset of S(n) . This is the first subquadratic upper bound on the size of universal point sets for planar 3-trees, as well as for the class of 2-trees and serial parallel graphs
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BD - Information theory
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GEGIG%2F11%2FE023" target="_blank" >GEGIG/11/E023: Graph Drawings and Representations</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Algorithms and Data Structures
ISBN
978-3-642-40104-6
ISSN
0302-9743
e-ISSN
—
Number of pages
12
Pages from-to
341-352
Publisher name
Springer Berlin Heidelberg
Place of publication
Berlin
Event location
London, ON, Canada
Event date
Aug 12, 2013
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—