All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Column Planarity and Partially-Simultaneous Geometric Embedding

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F17%3A00483679" target="_blank" >RIV/67985807:_____/17:00483679 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.7155/jgaa.00446" target="_blank" >http://dx.doi.org/10.7155/jgaa.00446</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.7155/jgaa.00446" target="_blank" >10.7155/jgaa.00446</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Column Planarity and Partially-Simultaneous Geometric Embedding

  • Original language description

    We introduce the notion of column planarity of a subset R of the vertices of a graph G. Informally, we say that R is column planar in G if we can assign x-coordinates to the vertices in R such that any assignment of y-coordinates to them produces a partial embedding that can be completed to a plane straight-line drawing of G. Column planarity is both a relaxation and a strengthening of unlabeled level planarity. We prove near tight bounds for the maximum size of column planar subsets of trees: every tree on n vertices contains a column planar set of size at least 14n/17 and for any epsilon > 0 and any sufficiently large n, there exists an n-vertex tree in which every column planar subset has size at most (5/6 + epsilon)n. In addition, we show that every outerplanar graph has a column planar set of size at least n/2. We also consider a relaxation of simultaneous geometric embedding (SGE), which we call partially-simultaneous geometric embedding (PSGE). A PSGE of two graphs G 1 and G 2 allows some of their vertices to map to two different points in the plane. We show how to use column planar subsets to construct k-PSGEs, which are PSGEs in which at least k vertices are mapped to the same point for both graphs. In particular, we show that every two trees on n vertices admit an 11n/17-PSGE and every two outerplanar graphs admit an n/4-PSGE.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Graph Algorithms and Applications

  • ISSN

    1526-1719

  • e-ISSN

  • Volume of the periodical

    21

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    20

  • Pages from-to

    983-1002

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85037335542