All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Higher-order Erdos-Szekeres theorems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10145705" target="_blank" >RIV/00216208:11320/13:10145705 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.aim.2013.04.020" target="_blank" >http://dx.doi.org/10.1016/j.aim.2013.04.020</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.aim.2013.04.020" target="_blank" >10.1016/j.aim.2013.04.020</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Higher-order Erdos-Szekeres theorems

  • Original language description

    Let P = (p(1), p(2),...,p(N)) be a sequence of points in the plane, where p(i) = (x(i), y(i)) and x(1) < x(2) < ... < x(N). A famous 1935 Erdos-Szekeres theorem asserts that every such P contains a monotone subsequence S of inverted right perpendicular root N inverted left perpendicular points. Another, equally famous theorem from the same paper implies that every such P contains a convex or concave subsequence of Omega(log N) points. Monotonicity is a property determined by pairs of points, and convexity concerns triples of points. We propose a generalization making both of these theorems members of an infinite family of Ramsey-type results. First we define a (k + 1)-tuple K subset of P to be positive if it lies on the graph of a function whose kth derivative is everywhere nonnegative, and similarly for a negative (k + 1)-tuple. Then we say that S subset of P is kth-order monotone if its (k + 1)-tuples are all positive or all negative. We investigate a quantitative bound for the corre

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Advances in Mathematics

  • ISSN

    0001-8708

  • e-ISSN

  • Volume of the periodical

    244

  • Issue of the periodical within the volume

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    15

  • Pages from-to

    1-15

  • UT code for WoS article

    000322423500001

  • EID of the result in the Scopus database