All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Higher-order Erdos-Szekeres theorems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10125726" target="_blank" >RIV/00216208:11320/12:10125726 - isvavai.cz</a>

  • Result on the web

    <a href="http://dl.acm.org/ft_gateway.cfm?id=2261264&ftid=1240072&dwn=1&CFID=261492957&CFTOKEN=16910344" target="_blank" >http://dl.acm.org/ft_gateway.cfm?id=2261264&ftid=1240072&dwn=1&CFID=261492957&CFTOKEN=16910344</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/2261250.2261264" target="_blank" >10.1145/2261250.2261264</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Higher-order Erdos-Szekeres theorems

  • Original language description

    Let P=(p_1,p_2,...,p_N) be a sequence of points in the plane, where p_i=(x_i,y_i) and x_1<x_2<...<x_N. A famous 1935 Erdos--Szekeres theorem asserts that every such P contains a monotone subsequence S of $sqrt N$ points. Another, equally famous theoremfrom the same paper implies that every such P contains a convex or concave subsequence of $Omega(log N)$ points. Monotonicity is a property determined by pairs of points, and convexity concerns triples of points. We propose a generalization making bothof these theorems members of an infinite family of Ramsey-type results. First we define a (k+1)-tuple $Ksubseteq P$ to be positive if it lies on the graph of a function whose kth derivative is everywhere nonnegative, and similarly for a negative (k+1)-tuple. Then we say that $Ssubseteq P$ is kth-order monotone if its (k+1)-tuples are all positive or all negative. We investigate quantitative bound for the corresponding Ramsey-type result (i.e., how large kth-order monotone subsequence

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 28th Annual ACM Symposium on Computational Geometry

  • ISBN

    978-1-4503-1299-8

  • ISSN

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

    81-90

  • Publisher name

    Association for Computing Machinery

  • Place of publication

    New York, USA

  • Event location

    Chapel Hill

  • Event date

    Jun 17, 2012

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article