All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Ramsey numbers and monotone colorings

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10384927" target="_blank" >RIV/00216208:11320/19:10384927 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=cCZIMzbrJ8" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=cCZIMzbrJ8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jcta.2018.11.013" target="_blank" >10.1016/j.jcta.2018.11.013</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Ramsey numbers and monotone colorings

  • Original language description

    For positive integers N and r &gt;= 2, an r-monotone coloring of ({1,...,N} choose r) is a 2-coloring by -1 and +1 that is monotone on the lexicographically ordered sequence of r-tuples of every (r+1)-tuple from ({1,...,N} choose r+1). Let R(n;r) be the minimum N such that every r-monotone coloring of ({1,...,N} choose r) contains a monochromatic copy of ({1,...,n} choose r). For every r &gt;= 3, it is known that R(n;r) &lt;= tow_(r-1)(O(n)), where tow_h(x) is the tower function of height h-1 defined as tow_1(x)=x and tow_h(x) = 2^(tow_(h-1)(x)) for h &gt;= 2. The Erdős-Szekeres Lemma and the Erdős-Szekeres Theorem imply R(n;2) = (n-1)^2+1 and R(n;3) = (2n-4 choose n-2) + 1, respectively. It follows from a result of Eliáš and Matoušek that R(n;4) &gt;= tow_3(Omega(n)). We show that R(n;r) &gt;= tow_(r-1)(Omega(n)) for every r &gt;= 3 . This, in particular, solves an open problem posed by Eliáš and Matoušek and by Moshkovitz and Shapira. Using two geometric interpretations of monotone colorings, we show connections between estimating and two Ramsey-type problems that have been recently considered by several researchers. Namely, we show connections with higher-order Erdős-Szekeres theorems and with Ramsey-type problems for order-type homogeneous sequences of points. We also prove that the number of r-monotone colorings of ({1,...,N} choose r) is 2^(N^(r-1)/r^(Theta(r))) for N &gt;= r &gt;= 3, which generalizes the well-known fact that the number of simple arrangements of N pseudolines is 2^(Theta(N^2)).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GJ18-13685Y" target="_blank" >GJ18-13685Y: Model thoery and extremal combinatorics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Combinatorial Theory - Series A

  • ISSN

    0097-3165

  • e-ISSN

  • Volume of the periodical

    2019

  • Issue of the periodical within the volume

    163

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    25

  • Pages from-to

    34-58

  • UT code for WoS article

    000456358100002

  • EID of the result in the Scopus database

    2-s2.0-85056829998