Bounds on eigenvalues of real and complex interval matrices
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10159430" target="_blank" >RIV/00216208:11320/13:10159430 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.amc.2012.11.075" target="_blank" >http://dx.doi.org/10.1016/j.amc.2012.11.075</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.amc.2012.11.075" target="_blank" >10.1016/j.amc.2012.11.075</a>
Alternative languages
Result language
angličtina
Original language name
Bounds on eigenvalues of real and complex interval matrices
Original language description
We present a cheap and tight formula for bounding real and imaginary parts of eigenvalues of real or complex interval matrices. It outperforms the classical formulae not only for the complex case but also for the real case. In particular, it generalizesand improves the results by Rohn (1998) [5] and Hertz (2009) [19]. The main idea behind is to reduce the problem to enclosing eigenvalues of symmetric interval matrices, for which diverse methods can be utilized. The result helps in analysing stability of uncertain dynamical systems since the formula gives sufficient conditions for testing Schur and Hurwitz stability of interval matrices. It may also serve as a starting point for some iteration methods.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BD - Information theory
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applied Mathematics and Computation
ISSN
0096-3003
e-ISSN
—
Volume of the periodical
219
Issue of the periodical within the volume
10
Country of publishing house
US - UNITED STATES
Number of pages
8
Pages from-to
5584-5591
UT code for WoS article
000313825900061
EID of the result in the Scopus database
—