All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Computing the spectral decomposition of interval matrices and a study on interval matrix powers

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F21%3A00541295" target="_blank" >RIV/67985807:_____/21:00541295 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/21:10435558

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.amc.2021.126174" target="_blank" >http://dx.doi.org/10.1016/j.amc.2021.126174</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.amc.2021.126174" target="_blank" >10.1016/j.amc.2021.126174</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Computing the spectral decomposition of interval matrices and a study on interval matrix powers

  • Original language description

    We present an algorithm for computing a spectral decomposition of an interval matrix as an enclosure of spectral decompositions of particular realizations of interval matrices. The algorithm relies on tight outer estimations of eigenvalues and eigenvectors of corresponding interval matrices, resulting in the total time complexity O(n^4) where n is the order of the matrix. We present a method for general interval matrices as well as its modification for symmetric interval matrices. In the second part of the paper, we apply the spectral decomposition to computing powers of interval matrices, which is our second goal. Numerical results suggest that a simple binary exponentiation is more efficient for smaller exponents, but our approach becomes better when computing higher powers or powers of a special type of matrices. In particular, we consider symmetric interval and circulant interval matrices. In both cases we utilize some properties of the corresponding classes of matrices to make the power computation more efficient.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA18-04735S" target="_blank" >GA18-04735S: Novel approaches for relaxation and approximation techniques in deterministic global optimization</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Applied Mathematics and Computation

  • ISSN

    0096-3003

  • e-ISSN

    1873-5649

  • Volume of the periodical

    403

  • Issue of the periodical within the volume

    August 2021

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    13

  • Pages from-to

    126174

  • UT code for WoS article

    000639134100016

  • EID of the result in the Scopus database

    2-s2.0-85103760084