Weak partition properties on trees
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10172734" target="_blank" >RIV/00216208:11320/13:10172734 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00153-013-0331-1" target="_blank" >http://dx.doi.org/10.1007/s00153-013-0331-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00153-013-0331-1" target="_blank" >10.1007/s00153-013-0331-1</a>
Alternative languages
Result language
angličtina
Original language name
Weak partition properties on trees
Original language description
We investigate the following weak Ramsey property of a cardinal.: If. is coloring of nodes of the tree kappa(<omega) by countably many colors, call a tree T subset of kappa(<omega) chi-homogeneous if the number of colors on each level of T is finite. Write kappa (sic) (lambda)(omega)(<omega) to denote that for any such coloring there is a chi-homogeneous lambda-branching tree of height omega. We prove, e.g., that if kappa < p or kappa > partial derivative is regular, then kappa (sic) (kappa)(omega)(<omega) and that b (sic) ( b)(omega)(<omega) and partial derivative (sic) (partial derivative)(omega)(<omega) . The arrow is applied to prove a generalization of a theorem of Hurewicz: A C. ech- analytic space is s- locally compact iff it does not contain aclosed homeomorphic copy of irrationals.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Archive for Mathematical Logic [online]
ISSN
1432-0665
e-ISSN
—
Volume of the periodical
52
Issue of the periodical within the volume
5-6
Country of publishing house
DE - GERMANY
Number of pages
25
Pages from-to
543-567
UT code for WoS article
000323905300007
EID of the result in the Scopus database
—