All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The determinant bound for discrepancy is almost tight

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10172783" target="_blank" >RIV/00216208:11320/13:10172783 - isvavai.cz</a>

  • Result on the web

    <a href="http://arxiv.org/abs/1101.0767" target="_blank" >http://arxiv.org/abs/1101.0767</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1090/S0002-9939-2012-11334-6" target="_blank" >10.1090/S0002-9939-2012-11334-6</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The determinant bound for discrepancy is almost tight

  • Original language description

    In 1986 Lovasz, Spencer, and Vesztergombi proved a lower bound for the hereditary a discrepancy of a set system F in terms of determinants of square submatrices of the incidence matrix of F. As shown by an example of Hoffman, this bound can differ from herdisc(F) by a multiplicative factor of order almost log n, where n is the size of the ground set of F. We prove that it never differs by more than O((log n)^3/2), assuming |F| bounded by a polynomial in n. We also prove that if such an F is the union oft systems F_1, . . ., F_t, each of hereditary discrepancy at most D, then herdisc(F) leq O(t^(1/2)(log n)^(3/2) D). For t = 2, this almost answers a question of Sos. The proof is based on a recent algorithmic result of Bansal, which computes low-discrepancy colorings using semidefinite programming.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Proceedings of the American Mathematical Society

  • ISSN

    0002-9939

  • e-ISSN

  • Volume of the periodical

    141

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    10

  • Pages from-to

    451-460

  • UT code for WoS article

    000326515600009

  • EID of the result in the Scopus database