All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On range searching with semialgebraic sets II

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10173445" target="_blank" >RIV/00216208:11320/13:10173445 - isvavai.cz</a>

  • Result on the web

    <a href="http://arxiv.org/abs/1208.3384" target="_blank" >http://arxiv.org/abs/1208.3384</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/120890855" target="_blank" >10.1137/120890855</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On range searching with semialgebraic sets II

  • Original language description

    Let $P$ be a set of $n$ points in $R^d$. We present a linear-size data structure for answering range queries on $P$ with constant-complexity semialgebraic sets as ranges, in time close to $O(n^{1-1/d})$. It essentially matches the performance of similarstructures for simplex range searching, and, for $dge 5$, significantly improves earlier solutions by the first two authors obtained in~1994. This almost settles a long-standing open problem in range searching. The data structure is based on the polynomial-partitioning technique of Guth and Katz, which shows that for a parameter $r$, $1 < r le n$, there exists a $d$-variate polynomial $f$ of degree $O(r^{1/d})$ such that each connected component of $R^dsetminus Z(f)$ contains at most $n/r$ points of $P$, where $Z(f)$ is the zero set of $f$. We present an efficient randomized algorithm for computing such a polynomial partition, which is of independent interest and is likely to have additional applications.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    SIAM Journal on Computing

  • ISSN

    0097-5397

  • e-ISSN

  • Volume of the periodical

    42

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    34

  • Pages from-to

    2039-2062

  • UT code for WoS article

    000328889400001

  • EID of the result in the Scopus database