All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Multilevel Polynomial Partitions and Simplified Range Searching

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10315903" target="_blank" >RIV/00216208:11320/15:10315903 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s00454-015-9701-2" target="_blank" >http://dx.doi.org/10.1007/s00454-015-9701-2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00454-015-9701-2" target="_blank" >10.1007/s00454-015-9701-2</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Multilevel Polynomial Partitions and Simplified Range Searching

  • Original language description

    The polynomial partitioning method of Guth and Katz (arXiv:1011.4105) has numerous applications in discrete and computational geometry. It partitions a given n-point set using the zero set Z(f) of a suitable d-variate polynomial f. Applications of this result are often complicated by the problem, "What should be done with the points of P lying within Z(f)?" A natural approach is to partition these points with another polynomial and continue further in a similar manner. So far this has been pursued withlimited success-several authors managed to construct and apply a second partitioning polynomial, but further progress has been prevented by technical obstacles. We provide a polynomial partitioning method with up to d polynomials in dimension d, which allows for a complete decomposition of the given point set. We apply it to obtain a new algorithm for the semialgebraic range searching problem. Our algorithm has running time bounds similar to a recent algorithm by Agarwal et al. (SIAM J C

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Discrete and Computational Geometry

  • ISSN

    0179-5376

  • e-ISSN

  • Volume of the periodical

    54

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    20

  • Pages from-to

    22-41

  • UT code for WoS article

    000355340300003

  • EID of the result in the Scopus database

    2-s2.0-84930576142