All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On a Generalization of Curvature Homogeneous Spaces

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10173718" target="_blank" >RIV/00216208:11320/13:10173718 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989592:15310/13:33116782

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s00025-011-0177-y" target="_blank" >http://dx.doi.org/10.1007/s00025-011-0177-y</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00025-011-0177-y" target="_blank" >10.1007/s00025-011-0177-y</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On a Generalization of Curvature Homogeneous Spaces

  • Original language description

    Sekigawa proved in 1977 that a 3-dimensional Riemannian manifold which is curvature homogeneous up to order 1 in the sense of I.M. Singer is always locally homogeneous. We deal here with the modification of the curvature homogeneity which is said to be "of type (1, 3)". We give example of a 3-dimensional Riemannian manifold which is curvature homogeneous up to order 1 in the modified sense but still not locally homogeneous.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GAP201%2F11%2F0356" target="_blank" >GAP201/11/0356: Riemannian, pseudo-Riemannian and affine differential geometry</a><br>

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Results in Mathematics

  • ISSN

    1422-6383

  • e-ISSN

  • Volume of the periodical

    63

  • Issue of the periodical within the volume

    1-2

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    6

  • Pages from-to

    129-134

  • UT code for WoS article

    000313870000010

  • EID of the result in the Scopus database