All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On a generalization of curvature homogeneus spaces

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F13%3APU96599" target="_blank" >RIV/00216305:26110/13:PU96599 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    On a generalization of curvature homogeneus spaces

  • Original language description

    K. Sekigawa proved in 1977 that a 3-dimensional Riemannian manifold which is curvature homogeneous up to order 1 in the sense of I.M. Singer is always locally homogeneous. We deal here with the modification of the curvature homogeneity which is said to be ``of type (1,3)". We give example of a 3-dimensional Riemannian manifold which is curvature homogeneous up to order 1 in the modified sense but still not locally homogeneous.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Results in Mathematics

  • ISSN

    1422-6383

  • e-ISSN

  • Volume of the periodical

    2013 (63)

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    6

  • Pages from-to

    129-134

  • UT code for WoS article

  • EID of the result in the Scopus database