On a generalization of curvature homogeneus spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F13%3APU96599" target="_blank" >RIV/00216305:26110/13:PU96599 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On a generalization of curvature homogeneus spaces
Original language description
K. Sekigawa proved in 1977 that a 3-dimensional Riemannian manifold which is curvature homogeneous up to order 1 in the sense of I.M. Singer is always locally homogeneous. We deal here with the modification of the curvature homogeneity which is said to be ``of type (1,3)". We give example of a 3-dimensional Riemannian manifold which is curvature homogeneous up to order 1 in the modified sense but still not locally homogeneous.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Results in Mathematics
ISSN
1422-6383
e-ISSN
—
Volume of the periodical
2013 (63)
Issue of the periodical within the volume
1
Country of publishing house
CH - SWITZERLAND
Number of pages
6
Pages from-to
129-134
UT code for WoS article
—
EID of the result in the Scopus database
—