On the existence of Evans potentials
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10174033" target="_blank" >RIV/00216208:11320/13:10174033 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00208-012-0873-2" target="_blank" >http://dx.doi.org/10.1007/s00208-012-0873-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00208-012-0873-2" target="_blank" >10.1007/s00208-012-0873-2</a>
Alternative languages
Result language
angličtina
Original language name
On the existence of Evans potentials
Original language description
It is shown that, for every noncompact parabolic Riemannian manifold X and every nonpolar compact K in X, there exists a positive harmonic function on X K which tends to infinity at infinity. (This is trivial for R, easy for R^2, and known for parabolic Riemann surfaces.) In fact, the statement is proven, more generally, for any noncompact connected Brelot harmonic space X, where constants are the only positive superharmonic functions and, for every nonpolar compact set K, there is a symmetric (positive) Green function for X K. This includes the case of parabolic Riemannian manifolds. Without symmetry, however, the statement may fail. This is shown by an example, where the underlying space is a graph.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F07%2F0388" target="_blank" >GA201/07/0388: Modern methods in potential theory and function spaces</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Annalen
ISSN
0025-5831
e-ISSN
—
Volume of the periodical
356
Issue of the periodical within the volume
4
Country of publishing house
DE - GERMANY
Number of pages
20
Pages from-to
1283-1302
UT code for WoS article
000321391300003
EID of the result in the Scopus database
—