All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

CSP DICHOTOMY FOR SPECIAL POLYADS

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10174135" target="_blank" >RIV/00216208:11320/13:10174135 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1142/S0218196713500215" target="_blank" >http://dx.doi.org/10.1142/S0218196713500215</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1142/S0218196713500215" target="_blank" >10.1142/S0218196713500215</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    CSP DICHOTOMY FOR SPECIAL POLYADS

  • Original language description

    For a digraph H, the Constraint Satisfaction Problem with template H, or CSP(H), is the problem of deciding whether a given input digraph G admits a homomorphism to H. The CSP dichotomy conjecture of Feder and Vardi states that for any digraph H, CSP(H)is either in P or NP-complete. Barto, Kozik, Maroti and Niven (Proc. Amer. Math. Soc. 137 (2009) 2921-2934) confirmed the conjecture for a class of oriented trees called special triads. We generalize this result, establishing the dichotomy for a class oforiented trees which we call special polyads. We prove that every tractable special polyad has bounded width and provide the description of special polyads of width 1. We also construct a tractable special polyad which neither has width 1 nor admits anynear-unanimity polymorphism.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GP201%2F09%2FP223" target="_blank" >GP201/09/P223: Constraint satisfaction problem and universal algebra</a><br>

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    International Journal of Algebra and Computation

  • ISSN

    0218-1967

  • e-ISSN

  • Volume of the periodical

    23

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    24

  • Pages from-to

    1151-1174

  • UT code for WoS article

    000323514700007

  • EID of the result in the Scopus database