CSP DICHOTOMY FOR SPECIAL POLYADS
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10174135" target="_blank" >RIV/00216208:11320/13:10174135 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1142/S0218196713500215" target="_blank" >http://dx.doi.org/10.1142/S0218196713500215</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0218196713500215" target="_blank" >10.1142/S0218196713500215</a>
Alternative languages
Result language
angličtina
Original language name
CSP DICHOTOMY FOR SPECIAL POLYADS
Original language description
For a digraph H, the Constraint Satisfaction Problem with template H, or CSP(H), is the problem of deciding whether a given input digraph G admits a homomorphism to H. The CSP dichotomy conjecture of Feder and Vardi states that for any digraph H, CSP(H)is either in P or NP-complete. Barto, Kozik, Maroti and Niven (Proc. Amer. Math. Soc. 137 (2009) 2921-2934) confirmed the conjecture for a class of oriented trees called special triads. We generalize this result, establishing the dichotomy for a class oforiented trees which we call special polyads. We prove that every tractable special polyad has bounded width and provide the description of special polyads of width 1. We also construct a tractable special polyad which neither has width 1 nor admits anynear-unanimity polymorphism.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GP201%2F09%2FP223" target="_blank" >GP201/09/P223: Constraint satisfaction problem and universal algebra</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Algebra and Computation
ISSN
0218-1967
e-ISSN
—
Volume of the periodical
23
Issue of the periodical within the volume
5
Country of publishing house
US - UNITED STATES
Number of pages
24
Pages from-to
1151-1174
UT code for WoS article
000323514700007
EID of the result in the Scopus database
—