All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the complexity of H-coloring for special oriented trees

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10383359" target="_blank" >RIV/00216208:11320/18:10383359 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.ejc.2017.10.001" target="_blank" >https://doi.org/10.1016/j.ejc.2017.10.001</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ejc.2017.10.001" target="_blank" >10.1016/j.ejc.2017.10.001</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the complexity of H-coloring for special oriented trees

  • Original language description

    For a fixed digraph H, the H -coloring problem is the problem of deciding whether a given input digraph G admits a homomorphism to H. The CSP dichotomy conjecture of Feder and Vardi is equivalent to proving that, for any H, the H-coloring problem is in P or NP -complete. We confirm this dichotomy for a certain class of oriented trees, which we call special trees (generalizing earlier results on special triads and polyads). Moreover, we prove that every tractable special oriented tree has bounded width, i.e., the corresponding H-coloring problem is solvable by local consistency checking. Our proof relies on recent algebraic tools, namely characterization of congruence meet-semidistributivity via pointing operations and absorption theory.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    European Journal of Combinatorics

  • ISSN

    0195-6698

  • e-ISSN

  • Volume of the periodical

    2018

  • Issue of the periodical within the volume

    69

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    22

  • Pages from-to

    54-75

  • UT code for WoS article

    000423886700006

  • EID of the result in the Scopus database

    2-s2.0-85042142918