ITERATED POWER INTERSECTIONS OF IDEALS IN RINGS OF ITERATED DIFFERENTIAL POLYNOMIALS
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10188774" target="_blank" >RIV/00216208:11320/13:10188774 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1142/S0219498813500205" target="_blank" >http://dx.doi.org/10.1142/S0219498813500205</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0219498813500205" target="_blank" >10.1142/S0219498813500205</a>
Alternative languages
Result language
angličtina
Original language name
ITERATED POWER INTERSECTIONS OF IDEALS IN RINGS OF ITERATED DIFFERENTIAL POLYNOMIALS
Original language description
Let R be an n-iterated ring of differential polynomials over a commutative noetherian domain which is a Q-algebra. We will prove that for every proper ideal I of R, the (n + 1)-iterated intersection I(n + 1) of powers of I equals zero. A standard application includes the freeness of non-finitely generated projective modules over such rings. If I is a proper ideal of the universal enveloping algebra of a finite-dimensional solvable Lie algebra over a field of characteristic zero, then we will improve theabove estimate by showing that I(2) = 0.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Algebra and its Applications
ISSN
0219-4988
e-ISSN
—
Volume of the periodical
12
Issue of the periodical within the volume
7
Country of publishing house
SG - SINGAPORE
Number of pages
10
Pages from-to
—
UT code for WoS article
000319078200001
EID of the result in the Scopus database
—