All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Iterative Reflections of Monads

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F10%3A00160019" target="_blank" >RIV/68407700:21230/10:00160019 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Iterative Reflections of Monads

  • Original language description

    Iterative monads were introduced by Calvin Elgot in the 1970's and are those ideal monads in which every guarded system of recursive equations has a unique solution. We prove that every ideal monad M has an iterative reflection, that is, an embedding into an iterative monad with the expected universal property. We also introduce the concept of iterativity for algebras for the monad M, following in the footsteps of Evelyn Nelson and Jerzy Tiuryn, and prove that M is iterative if and only if all free algebras for M are iterative algebras.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2010

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematical Structures in Computer Science

  • ISSN

    0960-1295

  • e-ISSN

  • Volume of the periodical

    20

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    34

  • Pages from-to

  • UT code for WoS article

    000278636600004

  • EID of the result in the Scopus database