How iterative reflections of monads are constructed
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F13%3A00203111" target="_blank" >RIV/68407700:21230/13:00203111 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.ic.2013.02.003" target="_blank" >http://dx.doi.org/10.1016/j.ic.2013.02.003</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ic.2013.02.003" target="_blank" >10.1016/j.ic.2013.02.003</a>
Alternative languages
Result language
angličtina
Original language name
How iterative reflections of monads are constructed
Original language description
Every ideal monad M on the category of sets is known to have a reflection hat{M} in the category of all iterative monads of Elgot. Here we describe the iterative reflection hat{M} as the monad of free iterative Eilenberg-Moore algebras for M. This yieldsnumerous concrete examples: if M is the free-semigroup monad, then hat{M} is obtained by adding a single absorbing element; if M is the monad of finite trees then hat{M} is the monad of rational trees, etc.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Information and Computation
ISSN
0890-5401
e-ISSN
—
Volume of the periodical
225
Issue of the periodical within the volume
apr
Country of publishing house
US - UNITED STATES
Number of pages
36
Pages from-to
83-118
UT code for WoS article
000317371800004
EID of the result in the Scopus database
—