Base modules for parametrized iterativity
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F14%3A00212995" target="_blank" >RIV/68407700:21230/14:00212995 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.tcs.2013.12.019" target="_blank" >http://dx.doi.org/10.1016/j.tcs.2013.12.019</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.tcs.2013.12.019" target="_blank" >10.1016/j.tcs.2013.12.019</a>
Alternative languages
Result language
angličtina
Original language name
Base modules for parametrized iterativity
Original language description
Abstrakt: The concept of a base, that is a parametrized finitary monad, which we introduced earlier, followed the footsteps of Tarmo Uustalu in his attempt to formalize parametrized recursion. We proved that for every base free iterative algebras exist,and we called the corresponding monad the rational monad of the base. Here we introduce modules for a base, and we prove that the rational monad of a base gives rise to a canonical module, that is characterized as the free iterative module on the given base.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Theoretical Computer Science
ISSN
0304-3975
e-ISSN
—
Volume of the periodical
2014
Issue of the periodical within the volume
523
Country of publishing house
GB - UNITED KINGDOM
Number of pages
30
Pages from-to
56-85
UT code for WoS article
000331666200003
EID of the result in the Scopus database
—