Explicit algebraic classification of Kundt geometries in any dimension
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10188962" target="_blank" >RIV/00216208:11320/13:10188962 - isvavai.cz</a>
Alternative codes found
RIV/44555601:13440/13:43884976
Result on the web
<a href="http://dx.doi.org/10.1088/0264-9381/30/12/125007" target="_blank" >http://dx.doi.org/10.1088/0264-9381/30/12/125007</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/0264-9381/30/12/125007" target="_blank" >10.1088/0264-9381/30/12/125007</a>
Alternative languages
Result language
angličtina
Original language name
Explicit algebraic classification of Kundt geometries in any dimension
Original language description
We present an algebraic classification, based on the null alignment properties of the Weyl tensor, of the general Kundt class of spacetimes in arbitrary dimension D for which the non-expanding, non-twisting, shear-free null direction k is a (multiple) Weyl aligned null direction (WAND). No field equations are used, so that the results apply not only to Einstein's gravity and its direct extension to higher dimensions, but also to any metric theory of gravity which admits the Kundt spacetimes. By an explicit evaluation of the Weyl tensor in a natural null frame we demonstrate that all Kundt geometries are of type I(b) or more special, and we derive simple necessary and sufficient conditions under which k becomes a double, triple or quadruple WAND. All possible algebraically special types, including the refinement to subtypes, are identified, namely II(a), II(b), II(c), II(d), III(a), III(b), N, O, IIi, IIIi, D(a), D(b), D(c) and D(d). The corresponding conditions are surprisingly clear a
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Classical and Quantum Gravity
ISSN
0264-9381
e-ISSN
—
Volume of the periodical
30
Issue of the periodical within the volume
12
Country of publishing house
GB - UNITED KINGDOM
Number of pages
25
Pages from-to
—
UT code for WoS article
000319664000008
EID of the result in the Scopus database
—