Algebraic structure of Robinson-Trautman and Kundt geometries in arbitrary dimension
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10290527" target="_blank" >RIV/00216208:11320/15:10290527 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1088/0264-9381/32/1/015001" target="_blank" >http://dx.doi.org/10.1088/0264-9381/32/1/015001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/0264-9381/32/1/015001" target="_blank" >10.1088/0264-9381/32/1/015001</a>
Alternative languages
Result language
angličtina
Original language name
Algebraic structure of Robinson-Trautman and Kundt geometries in arbitrary dimension
Original language description
We investigate the Weyl tensor algebraic structure of a fully general family of D-dimensional geometries that admit a non-twisting and shear-free null vector field k. From the coordinate components of the curvature tensor we explicitly derive all Weyl scalars of various boost weights. This enables us to give a complete algebraic classification of the metrics in the case when the optically privileged null direction k is a (multiple) Weyl aligned null direction (WAND). No field equations are applied, so the results are valid not only in Einstein's gravity, including its extension to higher dimensions, but also in any metric gravitation theory that admits non-twisting and shear-free spacetimes. We prove that all such geometries are of type I(b), or more special, and we derive surprisingly simple necessary and sufficient conditions under which k is a double, triple or quadruple WAND. All possible algebraically special types, including the refinement to subtypes, are thus identified, namely
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Classical and Quantum Gravity
ISSN
0264-9381
e-ISSN
—
Volume of the periodical
32
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
34
Pages from-to
—
UT code for WoS article
000347294800001
EID of the result in the Scopus database
2-s2.0-84918527068