A Fully Homomorphic Cryptosystem with Approximate Perfect Secrecy
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10189200" target="_blank" >RIV/00216208:11320/13:10189200 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-642-36095-4_24" target="_blank" >http://dx.doi.org/10.1007/978-3-642-36095-4_24</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-36095-4_24" target="_blank" >10.1007/978-3-642-36095-4_24</a>
Alternative languages
Result language
angličtina
Original language name
A Fully Homomorphic Cryptosystem with Approximate Perfect Secrecy
Original language description
We propose a new fully homomorphic cryptosystem called Symmetric Polly Cracker (SymPC) and we prove its security in the information theoretical settings. Namely, we prove that SymPC approaches perfect secrecy in bounded CPA model as its security parameter grows (which we call approximate perfect secrecy). In our construction, we use a Grobner basis to generate a polynomial factor ring of ciphertexts and use the underlying field as the plaintext space. The Grobner basis equips the ciphertext factor ringwith a multiplicative structure that is easily algorithmized, thus providing an environment for a fully homomorphic cryptosystem.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/VF20102015006" target="_blank" >VF20102015006: Deciphering and decoding of digital tracks</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Topics in Cryptology - CT-RSA 2013
ISBN
978-3-642-36094-7
ISSN
0302-9743
e-ISSN
—
Number of pages
14
Pages from-to
375-388
Publisher name
Springer Berlin Heidelberg
Place of publication
Berlin
Event location
San Francisco
Event date
Feb 25, 2013
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—