Encryption with weakly random keys using quantum ciphertext
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F12%3A00057319" target="_blank" >RIV/00216224:14330/12:00057319 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Encryption with weakly random keys using quantum ciphertext
Original language description
The lack of perfect randomness can cause significant problems in securing communication between two parties. McInnes and Pinkas proved that unconditionally secure encryption is impossible when the key is sampled from a weak random source. The adversary can always gain some information about the plaintext, regardless of the cryptosystem design. Most notably, the adversary can obtain full information about the plaintext if he has access to just two bits of information about the source (irrespective on length of the key). In this paper we show that for every weak random source there is a cryptosystem with a classical plaintext, a classical key, and a quantum ciphertext that bounds the adversary's probability $p$ to guess correctly the plaintext strictly under the McInnes-Pinkas bound, except for a single case, where it coincides with the bound.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Quantum Information and Computing
ISSN
1533-7146
e-ISSN
—
Volume of the periodical
12
Issue of the periodical within the volume
5-6
Country of publishing house
US - UNITED STATES
Number of pages
9
Pages from-to
395-403
UT code for WoS article
000304380700002
EID of the result in the Scopus database
—