ON THE DIRICHLET PROBLEM FOR THE GENERALIZED n-LAPLACIAN: SINGULAR NONLINEARITY WITH THE EXPONENTIAL AND MULTIPLE EXPONENTIAL CRITICAL GROWTH RANGE
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10189510" target="_blank" >RIV/00216208:11320/13:10189510 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.7153/mia-16-20" target="_blank" >http://dx.doi.org/10.7153/mia-16-20</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.7153/mia-16-20" target="_blank" >10.7153/mia-16-20</a>
Alternative languages
Result language
angličtina
Original language name
ON THE DIRICHLET PROBLEM FOR THE GENERALIZED n-LAPLACIAN: SINGULAR NONLINEARITY WITH THE EXPONENTIAL AND MULTIPLE EXPONENTIAL CRITICAL GROWTH RANGE
Original language description
Let Omega subset of R-n, n }= 2, be a bounded domain containing the origin. Applying the Mountain Pass Theorem and a singular version of the generalized Moser-Trudinger inequality we prove the existence of a non-trivial weak solution to the problem u isan element of(W0L Phi)-L-1(Omega) and -div(Phi'(vertical bar del u vertical bar)del u/vertical bar del u vertical bar = f(x,u)/vertical bar x vertical bar(a) in Omega, where a subset of [0,n), Phi is a Young function such that the space (W0L)-L-1 Phi(Omega) is embedded into exponential or multiple exponential Orlicz space and f (x,t) has the corresponding critical growth.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Inequalities and Applications
ISSN
1331-4343
e-ISSN
—
Volume of the periodical
16
Issue of the periodical within the volume
1
Country of publishing house
CR - COSTA RICA
Number of pages
23
Pages from-to
255-277
UT code for WoS article
000317599800020
EID of the result in the Scopus database
—