Proximity graphs inside large weighted graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10190153" target="_blank" >RIV/00216208:11320/13:10190153 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1002/net.21464" target="_blank" >http://dx.doi.org/10.1002/net.21464</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/net.21464" target="_blank" >10.1002/net.21464</a>
Alternative languages
Result language
angličtina
Original language name
Proximity graphs inside large weighted graphs
Original language description
Given a weighted graph G = (V,E) and a subset U of V, we define several graphs with vertex set U in which two vertices are adjacent if they satisfy a specific proximity rule. These rules use the shortest path distance in G and generalize the proximity rules that generate some of the most common proximity graphs in Euclidean spaces. We prove basic properties of the defined graphs and provide algorithms for their computation. (c) 2012 Wiley Periodicals, Inc. NETWORKS, 2013
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GEGIG%2F11%2FE023" target="_blank" >GEGIG/11/E023: Graph Drawings and Representations</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Networks
ISSN
0028-3045
e-ISSN
—
Volume of the periodical
61
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
11
Pages from-to
29-39
UT code for WoS article
000311974800003
EID of the result in the Scopus database
—