On incidence coloring conjecture in Cartesian products of graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10332720" target="_blank" >RIV/00216208:11320/16:10332720 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.dam.2016.04.030" target="_blank" >http://dx.doi.org/10.1016/j.dam.2016.04.030</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.dam.2016.04.030" target="_blank" >10.1016/j.dam.2016.04.030</a>
Alternative languages
Result language
angličtina
Original language name
On incidence coloring conjecture in Cartesian products of graphs
Original language description
An incidence in a graph G is a pair (v, e) where v is a vertex of G and e is an edge of G incident to v. Two incidences (v, e) and (u, f) are adjacent if at least one of the following holds: (a) v = u, (b) e = f, or (c) vu is an element of {e, f}. An incidence coloring of G is a coloring of its incidences assigning distinct colors to adjacent incidences. It was conjectured that at most Delta(G) + 2 colors are needed for an incidence coloring of any graph G. The conjecture is false in general, but the bound holds for many classes of graphs. We introduce some sufficient properties of the two factor graphs of a Cartesian product graph G for which G admits an incidence coloring with at most Delta(G) + 2 colors.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA14-10799S" target="_blank" >GA14-10799S: Hybercubic, graph and hypergraph structures</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete Applied Mathematics
ISSN
0166-218X
e-ISSN
—
Volume of the periodical
213
Issue of the periodical within the volume
Neuveden
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
8
Pages from-to
93-100
UT code for WoS article
000384381400010
EID of the result in the Scopus database
2-s2.0-84967025615