Grid representations and the chromatic number
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10190180" target="_blank" >RIV/00216208:11320/13:10190180 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.comgeo.2013.05.003" target="_blank" >http://dx.doi.org/10.1016/j.comgeo.2013.05.003</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.comgeo.2013.05.003" target="_blank" >10.1016/j.comgeo.2013.05.003</a>
Alternative languages
Result language
angličtina
Original language name
Grid representations and the chromatic number
Original language description
A grid drawing of a graph maps vertices to the grid Z(d) and edges to line segments that avoid grid points representing other vertices. We show that a graph G is q(d)-colorable, d, g }= 2, if and only if there is a grid drawing of G in Z(d) in which no line segment intersects more than q grid points. This strengthens the result of D. Flores Penaloza and F.J. Zaragoza Martinez. Second, we study grid drawings with a bounded number of columns, introducing some new NP-complete problems. Finally, we show that any planar graph has a planar grid drawing where every line segment contains exactly two grid points. This result proves conjectures asked by D. Flores Penaloza and F.J. Zaragoza Martinez. (c) 2013 Published by Elsevier B.V.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GEGIG%2F11%2FE023" target="_blank" >GEGIG/11/E023: Graph Drawings and Representations</a><br>
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Computational Geometry: Theory and Applications
ISSN
0925-7721
e-ISSN
—
Volume of the periodical
46
Issue of the periodical within the volume
8
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
13
Pages from-to
990-1002
UT code for WoS article
000321082000008
EID of the result in the Scopus database
—