On the Existence of a Weak Solution of Viscous Incompressible Flow Past a Cascade of Profiles with an Arbitrarily Large Inflow
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10190287" target="_blank" >RIV/00216208:11320/13:10190287 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21220/13:00212824
Result on the web
<a href="http://dx.doi.org/10.1007/s00021-013-0135-4" target="_blank" >http://dx.doi.org/10.1007/s00021-013-0135-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00021-013-0135-4" target="_blank" >10.1007/s00021-013-0135-4</a>
Alternative languages
Result language
angličtina
Original language name
On the Existence of a Weak Solution of Viscous Incompressible Flow Past a Cascade of Profiles with an Arbitrarily Large Inflow
Original language description
The paper deals with the analysis of a stationary viscous incompressible flow through a cascade of profiles representing a blade row of a turbine. The initial-boundary value problem for the Navier-Stokes system is formulated in a domain having the form of one spatial period of the cascade. In comparison to previous results, we solve the problem with an arbitrarily large inflow into the turbine. We formulate the "artificial" boundary condition on the outflow (the modification of the so called do-nothingcondition) that enables us to prove the existence of a weak solution.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Fluid Mechanics
ISSN
1422-6928
e-ISSN
—
Volume of the periodical
15
Issue of the periodical within the volume
4
Country of publishing house
CH - SWITZERLAND
Number of pages
15
Pages from-to
701-715
UT code for WoS article
000326933000004
EID of the result in the Scopus database
—