A steady flow through a plane cascade of profiles with an arbitrarily large inflow_The mathematical model, existence of a weak solution
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F16%3A00308877" target="_blank" >RIV/68407700:21220/16:00308877 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.amc.2015.05.066" target="_blank" >http://dx.doi.org/10.1016/j.amc.2015.05.066</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.amc.2015.05.066" target="_blank" >10.1016/j.amc.2015.05.066</a>
Alternative languages
Result language
angličtina
Original language name
A steady flow through a plane cascade of profiles with an arbitrarily large inflow_The mathematical model, existence of a weak solution
Original language description
The paper deals with a mathematical model of a viscous stationary incompressible flow through a cascade of profiles. The problem for the Navier-Stokes system is formulated in a domain corresponding to one spatial period of the cascade. We consider several types of boundary conditions on various parts of the boundary (the inflow, the artificial lower and upper boundaries, the profile, the outflow). We solve the problem with an arbitrarily large inflow into the turbine. We formulate the "artificial" boundary condition on the outflow (the modification of the so called do-nothing condition) which enables us to prove the existence of a weak solution for any inflow.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-00522S" target="_blank" >GA13-00522S: Qualitative analysis and numerical solution of problems of flows in generally time-dependent domains with various boundary conditions</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applied Mathematics and Computation
ISSN
0096-3003
e-ISSN
—
Volume of the periodical
272
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
5
Pages from-to
687-691
UT code for WoS article
000364991600011
EID of the result in the Scopus database
2-s2.0-84947042678