Computing Cartograms with Optimal Complexity
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10190902" target="_blank" >RIV/00216208:11320/13:10190902 - isvavai.cz</a>
Result on the web
<a href="http://link.springer.com/article/10.1007%2Fs00454-013-9521-1" target="_blank" >http://link.springer.com/article/10.1007%2Fs00454-013-9521-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00454-013-9521-1" target="_blank" >10.1007/s00454-013-9521-1</a>
Alternative languages
Result language
angličtina
Original language name
Computing Cartograms with Optimal Complexity
Original language description
In a rectilinear dual of a planar graph vertices are represented by sim- ple rectilinear polygons, while edges are represented by side-contact between the corresponding polygons. A rectilinear dual is called a cartogram if the area of each region is equal to a pre-specified weight. The complexity of a cartogram is determined by the maximum number of corners (or sides) required for any polygon. In a series of papers the polygonal complexity of such representations for maximal planar graphs has been reduced from the initial 40 to 34, then to 12 and very recently to the currently best known 10. Here we describe a construction with 8-sided polygons, which is opti- mal in terms of polygonal complexity as 8-sided polygons are sometimes necessary.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GEGIG%2F11%2FE023" target="_blank" >GEGIG/11/E023: Graph Drawings and Representations</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete and Computational Geometry
ISSN
0179-5376
e-ISSN
—
Volume of the periodical
50
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
27
Pages from-to
784-810
UT code for WoS article
000324494500010
EID of the result in the Scopus database
—