All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On Lipschitz Mappings Onto a Square

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10191090" target="_blank" >RIV/00216208:11320/13:10191090 - isvavai.cz</a>

  • Result on the web

    <a href="http://link.springer.com/chapter/10.1007/978-1-4614-7258-2_33/fulltext.html" target="_blank" >http://link.springer.com/chapter/10.1007/978-1-4614-7258-2_33/fulltext.html</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-1-4614-7258-2_33" target="_blank" >10.1007/978-1-4614-7258-2_33</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On Lipschitz Mappings Onto a Square

  • Original language description

    Recently, Preiss proved that every subset of the plane of a positive Lebesgue measure can be mapped onto a square by a Lipschitz map. In this note we give an alternative proof of this result, based on a well-known combinatorial lemma of Erdős and Szekeres. The validity of an appropriate generalization of this lemma to higher dimensions remains an open problem.

  • Czech name

  • Czech description

Classification

  • Type

    C - Chapter in a specialist book

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Book/collection name

    The Mathematics of Paul Erdős I

  • ISBN

    978-1-4614-7257-5

  • Number of pages of the result

    8

  • Pages from-to

    533-540

  • Number of pages of the book

    564

  • Publisher name

    Springer

  • Place of publication

    New York

  • UT code for WoS chapter