On Lipschitz Mappings Onto a Square
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10191090" target="_blank" >RIV/00216208:11320/13:10191090 - isvavai.cz</a>
Result on the web
<a href="http://link.springer.com/chapter/10.1007/978-1-4614-7258-2_33/fulltext.html" target="_blank" >http://link.springer.com/chapter/10.1007/978-1-4614-7258-2_33/fulltext.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-1-4614-7258-2_33" target="_blank" >10.1007/978-1-4614-7258-2_33</a>
Alternative languages
Result language
angličtina
Original language name
On Lipschitz Mappings Onto a Square
Original language description
Recently, Preiss proved that every subset of the plane of a positive Lebesgue measure can be mapped onto a square by a Lipschitz map. In this note we give an alternative proof of this result, based on a well-known combinatorial lemma of Erdős and Szekeres. The validity of an appropriate generalization of this lemma to higher dimensions remains an open problem.
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
The Mathematics of Paul Erdős I
ISBN
978-1-4614-7257-5
Number of pages of the result
8
Pages from-to
533-540
Number of pages of the book
564
Publisher name
Springer
Place of publication
New York
UT code for WoS chapter
—