Symplectic Twistor Operator on $R^2n$ and the Segal-Shale-Weil Representation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10191626" target="_blank" >RIV/00216208:11320/13:10191626 - isvavai.cz</a>
Result on the web
<a href="http://link.springer.com/article/10.1007/s11785-013-0300-z" target="_blank" >http://link.springer.com/article/10.1007/s11785-013-0300-z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11785-013-0300-z" target="_blank" >10.1007/s11785-013-0300-z</a>
Alternative languages
Result language
angličtina
Original language name
Symplectic Twistor Operator on $R^2n$ and the Segal-Shale-Weil Representation
Original language description
The aim of our article is the study of solution space of the symplectic twistor operator $T_s$ in symplectic spin geometry on standard symplectic space $(mR^{2n},omega)$, which is the symplectic analogue of the twistor operator in (pseudo)Riemannian spin geometry. In particular, we observe a substantial difference between the case $n=1$ of real dimension $2$ and the case of $mR^{2n}$, $n>1$. For $n>1$, the solution space of $T_s$ is isomorphic to the Segal-Shale-Weil representation.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Complex Analysis and Operator Theory
ISSN
1661-8254
e-ISSN
—
Volume of the periodical
2014
Issue of the periodical within the volume
8
Country of publishing house
CH - SWITZERLAND
Number of pages
16
Pages from-to
513-528
UT code for WoS article
—
EID of the result in the Scopus database
—