Symplectic twistor operator and its solution space on $mR^2$
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10191627" target="_blank" >RIV/00216208:11320/13:10191627 - isvavai.cz</a>
Result on the web
<a href="http://www.emis.de/journals/AM/13-3/index.html" target="_blank" >http://www.emis.de/journals/AM/13-3/index.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5817/AM2013-3-161" target="_blank" >10.5817/AM2013-3-161</a>
Alternative languages
Result language
angličtina
Original language name
Symplectic twistor operator and its solution space on $mR^2$
Original language description
We introduce the symplectic twistor operator $T_s$ in symplectic spin geometry of real dimension two, as a symplectic analogue of the Dolbeault operator in complex spin geometry of complex dimension $1$. Based on the techniques of the metaplectic Howe duality and algebraic Weyl algebra, we compute the space of its solutions on $mR^2$.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Archivum Mathematicum
ISSN
0044-8753
e-ISSN
—
Volume of the periodical
2013
Issue of the periodical within the volume
49
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
25
Pages from-to
161-185
UT code for WoS article
—
EID of the result in the Scopus database
—