Higher symmetries of symplectic Dirac operator
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10420726" target="_blank" >RIV/00216208:11320/20:10420726 - isvavai.cz</a>
Alternative codes found
RIV/00216224:14310/20:00114522
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=jvrEBna4FF" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=jvrEBna4FF</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10711-020-00529-3" target="_blank" >10.1007/s10711-020-00529-3</a>
Alternative languages
Result language
angličtina
Original language name
Higher symmetries of symplectic Dirac operator
Original language description
We construct in projective differential geometry of the real dimension 2 higher symmetry algebra of the symplectic Dirac operator acting on symplectic spinors. The higher symmetry differential operators correspond to the solution space of a class of projectively invariant overdetermined operators of arbitrarily high order acting on symmetric tensors. The higher symmetry algebra structure corresponds to a completely prime primitive ideal having as its associated variety the minimal nilpotent orbit of sl(3,R).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Geometriae Dedicata
ISSN
0046-5755
e-ISSN
—
Volume of the periodical
2020
Issue of the periodical within the volume
209
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
22
Pages from-to
177-198
UT code for WoS article
000557270300001
EID of the result in the Scopus database
2-s2.0-85083440692