Induced C-*-Complexes in Metaplectic Geometry
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10403604" target="_blank" >RIV/00216208:11320/19:10403604 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=HJxFNpaN8H" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=HJxFNpaN8H</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00220-018-3275-9" target="_blank" >10.1007/s00220-018-3275-9</a>
Alternative languages
Result language
angličtina
Original language name
Induced C-*-Complexes in Metaplectic Geometry
Original language description
For a symplectic manifold admitting a metaplectic structure and for a Kuiper map, we construct a complex of differential operators acting on exterior differential forms with values in the dual of Kostant's symplectic spinor bundle. Defining a Hilbert C-*-structure on this bundle for a suitable C-*-algebra, we obtain an elliptic C-*-complex in the sense of Mishchenko-Fomenko. Its cohomology groups appear to be finitely generated projective Hilbert C-*-modules. The paper can serve as a guide for handling differential complexes and PDEs on Hilbert bundles.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA17-01171S" target="_blank" >GA17-01171S: Invariant differential operators and their applications in geometric modelling and control theory</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Communications in Mathematical Physics
ISSN
0010-3616
e-ISSN
—
Volume of the periodical
365
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
31
Pages from-to
61-91
UT code for WoS article
000455898800003
EID of the result in the Scopus database
2-s2.0-85055209479