Calculus on symplectic manifolds
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F18%3A00101831" target="_blank" >RIV/00216224:14310/18:00101831 - isvavai.cz</a>
Result on the web
<a href="https://dml.cz/bitstream/handle/10338.dmlcz/147504/ArchMathRetro_054-2018-5_3.pdf" target="_blank" >https://dml.cz/bitstream/handle/10338.dmlcz/147504/ArchMathRetro_054-2018-5_3.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5817/AM2018-5-265" target="_blank" >10.5817/AM2018-5-265</a>
Alternative languages
Result language
angličtina
Original language name
Calculus on symplectic manifolds
Original language description
On a symplectic manifold, there is a natural elliptic complex replacing the de Rham complex. It can be coupled to a vector bundle with connection and, when the curvature of this connection is constrained to be a multiple of the symplectic form, we find a new complex. In particular, on complex projective space with its Fubini–Study form and connection, we can build a series of differential complexes akin to the Bernstein–Gelfand–Gelfand complexes from parabolic differential geometry.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10100 - Mathematics
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Archivum Mathematicum
ISSN
1212-5059
e-ISSN
—
Volume of the periodical
54 (2018)
Issue of the periodical within the volume
5
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
16
Pages from-to
265-280
UT code for WoS article
000462184000003
EID of the result in the Scopus database
2-s2.0-85060138545