Parabolic conformally symplectic structures III; Invariant differential operators and complexes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10403841" target="_blank" >RIV/00216208:11320/19:10403841 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=zpw-iLDuIn" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=zpw-iLDuIn</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.25537/dm.2019v24.2203-2240" target="_blank" >10.25537/dm.2019v24.2203-2240</a>
Alternative languages
Result language
angličtina
Original language name
Parabolic conformally symplectic structures III; Invariant differential operators and complexes
Original language description
This is the last part of a series of articles on a family of geometric structures (PACS-structures) which all have an underlying almost conformally symplectic structure. While the first part of the series was devoted to the general study of these structures, the second part focused on the case that the underlying structure is conformally symplectic (PCS-structures). In that case, we obtained a close relation to parabolic contact structures via a concept of parabolic contactification. It was also shown that special symplectic connections (and thus all connections of exotic symplectic holonomy) arise as the canonical connection of such a structure. In this last part, we use parabolic contactifications and constructions related to Bernstein-Gelfand-Gelfand (BGG) sequences for parabolic contact structures, to construct sequences of differential operators naturally associated to a PCS-structure. In particular, this gives rise to a large family of complexes of differential operators associated to a special symplectic connection. In some cases, large families of complexes for more general instances of PCS-structures are obtained.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA17-01171S" target="_blank" >GA17-01171S: Invariant differential operators and their applications in geometric modelling and control theory</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Documenta Mathematica
ISSN
1431-0643
e-ISSN
—
Volume of the periodical
2019
Issue of the periodical within the volume
24
Country of publishing house
DE - GERMANY
Number of pages
38
Pages from-to
2203-2240
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85078065710