Twistor Operators in Symplectic Geometry
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10455146" target="_blank" >RIV/00216208:11320/22:10455146 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=KFGTjqLUx_" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=KFGTjqLUx_</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00006-022-01199-y" target="_blank" >10.1007/s00006-022-01199-y</a>
Alternative languages
Result language
angličtina
Original language name
Twistor Operators in Symplectic Geometry
Original language description
On a symplectic manifold equipped with a symplectic connection and a metaplectic structure, we define two families of sequences of differential operators, called the symplectic twistor operators. We prove that if the connection is torsion-free and Weyl-flat, the sequences in these families form complexes.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA20-11473S" target="_blank" >GA20-11473S: Symmetry and invariance in analysis, geometric modelling and control theory</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advances in Applied Clifford Algebras
ISSN
0188-7009
e-ISSN
—
Volume of the periodical
32
Issue of the periodical within the volume
1
Country of publishing house
CH - SWITZERLAND
Number of pages
9
Pages from-to
1-9
UT code for WoS article
000748428300001
EID of the result in the Scopus database
2-s2.0-85124009116