The F-method and a branching problem for generalized Verma modules associated to $({mathrm{Lie~}G_2},{operatorname{so}(7)})$
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10191629" target="_blank" >RIV/00216208:11320/13:10191629 - isvavai.cz</a>
Result on the web
<a href="http://www.emis.de/journals/AM/13-5/index.html" target="_blank" >http://www.emis.de/journals/AM/13-5/index.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5817/AM2013-5-317" target="_blank" >10.5817/AM2013-5-317</a>
Alternative languages
Result language
angličtina
Original language name
The F-method and a branching problem for generalized Verma modules associated to $({mathrm{Lie~}G_2},{operatorname{so}(7)})$
Original language description
The branching problem for a couple of non-compatible Lie algebras and their parabolic subalgebras applied to generalized Verma modules was recently discussed in cite{ms}. In the present article, we employ the recently developed F-method, cite{KOSS1}, cite{KOSS2} to the couple of non-compatible Lie algebras $mathrm{Lie~}G_2stackrel{i}{hookrightarrow}{so(7)}$, and generalized conformal ${so(7)}$-Verma modules of scalar type. As a result, we classify the $i(LieGtwo) cap gop$-singular vectors for this class of $so(7)$-modules.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Archivum Mathematicum
ISSN
0044-8753
e-ISSN
—
Volume of the periodical
2013
Issue of the periodical within the volume
49
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
16
Pages from-to
317-332
UT code for WoS article
—
EID of the result in the Scopus database
—