The branching problem for generalized Verma modules, with application to the pair $(so(7),Lie G_2)$
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10289601" target="_blank" >RIV/00216208:11320/14:10289601 - isvavai.cz</a>
Result on the web
<a href="http://www.worldscientific.com/doi/abs/10.1142/S0219498814500340" target="_blank" >http://www.worldscientific.com/doi/abs/10.1142/S0219498814500340</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
The branching problem for generalized Verma modules, with application to the pair $(so(7),Lie G_2)$
Original language description
We consider the branching problem for generalized Verma modules $M_lambda(mathfrak g, mathfrak p)$ applied to couples of reductive Lie algebras $bar{mathfrak g}stackrel{i}{hookrightarrow} mathfrak g$. Our analysis of the problem is based on projecting character formulas to quantify the branching, and on the action of the center of $U(bar{mathfrak g})$ to construct explicitly singular vectors realizing the $bar{gog}$-top level of the branching. We compute explicitly the top part of the branching for the pair $mathrm{Lie~}G_2stackrel{i} hookrightarrow{so(7)}$ for both strongly and weakly compatible with $i(mathrm {Lie~} G_2)$ parabolic subalgebras and a large class of inducing representations.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Algebra and its Applications
ISSN
0219-4988
e-ISSN
—
Volume of the periodical
2014
Issue of the periodical within the volume
13 (7)
Country of publishing house
SG - SINGAPORE
Number of pages
32
Pages from-to
1-32
UT code for WoS article
—
EID of the result in the Scopus database
—