Smooth structures on pseudomanifolds with isolated conical singularities
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10191636" target="_blank" >RIV/00216208:11320/13:10191636 - isvavai.cz</a>
Alternative codes found
RIV/67985840:_____/13:00391461
Result on the web
<a href="http://link.springer.com/article/10.1007%2Fs40306-013-0009-0" target="_blank" >http://link.springer.com/article/10.1007%2Fs40306-013-0009-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s40306-013-0009-0" target="_blank" >10.1007/s40306-013-0009-0</a>
Alternative languages
Result language
angličtina
Original language name
Smooth structures on pseudomanifolds with isolated conical singularities
Original language description
In this note we introduce the notion of a smooth structure on a conical pseudomanifold M in terms of C oo-rings of smooth functions on M. For a finitely generated smooth structure C oo(M) we introduce the notion of the Nash tangent bundle, the Zariski tangent bundle, the tangent bundle of M, and the notion of characteristic classes of M. We prove the vanishing of a Nash vector field at a singular point for a special class of Euclidean smooth structures on M. We introduce the notion of a conical symplectic form on M and show that it is smooth with respect to a Euclidean smooth structure on M. If a conical symplectic structure is also smooth with respect to a compatible Poisson smooth structure C oo(M), we show that its Brylinski-Poisson homology groupscoincide with the de Rham homology groups of M. We show nontrivial examples of these smooth conical symplectic-Poisson pseudomanifolds.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Acta Mathematica Vietnamica
ISSN
0251-4184
e-ISSN
—
Volume of the periodical
2013
Issue of the periodical within the volume
38
Country of publishing house
DE - GERMANY
Number of pages
22
Pages from-to
33-54
UT code for WoS article
—
EID of the result in the Scopus database
—