Parabolic conformally symplectic structures I; definition and distinguished connections
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10387195" target="_blank" >RIV/00216208:11320/18:10387195 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1515/forum-2017-0018" target="_blank" >https://doi.org/10.1515/forum-2017-0018</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/forum-2017-0018" target="_blank" >10.1515/forum-2017-0018</a>
Alternative languages
Result language
angličtina
Original language name
Parabolic conformally symplectic structures I; definition and distinguished connections
Original language description
We introduce a class of first order G-structures, each of which has an underlying almost conformally symplectic structure. There is one such structure for each real simple Lie algebra which is not of type C-n and admits a contact grading. We show that a structure of each of these types on a smooth manifold M determines a canonical compatible linear connection on the tangent bundle TM. This connection is characterized by a normalization condition on its torsion. The algebraic background for this result is proved using Kostant's theorem on Lie algebra cohomology. For each type, we give an explicit description of both the geometric structure and the normalization condition. In particular, the torsion of the canonical connection naturally splits into two components, one of which is exactly the obstruction to the underlying structure being conformally symplectic. This article is the first in a series aiming at a construction of differential complexes naturally associated to these geometric structures.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Forum Mathematicum
ISSN
0933-7741
e-ISSN
—
Volume of the periodical
30
Issue of the periodical within the volume
3
Country of publishing house
DE - GERMANY
Number of pages
19
Pages from-to
733-751
UT code for WoS article
000430908100011
EID of the result in the Scopus database
2-s2.0-85037819364