Long Time Behavior and Stabilization to Equilibria of Solutions to the Navier-Stokes-Fourier System Driven by Highly Oscillating Unbounded External Forces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10192670" target="_blank" >RIV/00216208:11320/13:10192670 - isvavai.cz</a>
Alternative codes found
RIV/67985840:_____/13:00392417
Result on the web
<a href="http://dx.doi.org/10.1007/s10884-013-9299-0" target="_blank" >http://dx.doi.org/10.1007/s10884-013-9299-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10884-013-9299-0" target="_blank" >10.1007/s10884-013-9299-0</a>
Alternative languages
Result language
angličtina
Original language name
Long Time Behavior and Stabilization to Equilibria of Solutions to the Navier-Stokes-Fourier System Driven by Highly Oscillating Unbounded External Forces
Original language description
We show that solutions of the Navier-Stokes-Fourier system describing the motion of a general viscous, compressible, and heat conducting fluid stabilize to an equilibrium provided the fluid is driven by highly oscillating forces with polynomial growth intime. This means that though the force we consider is unbounded, thanks to the rapid oscillations the solution will still converge to the homogeneous static state as time approaches infinity.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F09%2F0917" target="_blank" >GA201/09/0917: Mathematical and computer analysis of the evolution processes in nonlinear viscoelastic fluid-like materials</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Dynamics and Differential Equations
ISSN
1040-7294
e-ISSN
—
Volume of the periodical
25
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
12
Pages from-to
257-268
UT code for WoS article
000319009800001
EID of the result in the Scopus database
—