Dynamical similarity and instabilities in high-Stokes-number oscillatory flows of superfluid helium
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10408206" target="_blank" >RIV/00216208:11320/19:10408206 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=MximpwRzaK" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=MximpwRzaK</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevB.99.054511" target="_blank" >10.1103/PhysRevB.99.054511</a>
Alternative languages
Result language
angličtina
Original language name
Dynamical similarity and instabilities in high-Stokes-number oscillatory flows of superfluid helium
Original language description
We present a unified analysis of the drag forces acting on oscillating bodies submerged in superfluid helium such as a vibrating wire resonator, tuning forks, a double-paddle oscillator, and a torsionally oscillating disk. We find that for high-Stokes-number oscillatory flows, the drag force originating from the normal component of superfluid helium exhibits a clearly defined universal scaling. Following classical fluid dynamics, we derive the universal scaling law and define relevant dimensionless parameters such as the Donnelly number. We verify this scaling experimentally using all of our oscillators in superfluid He-4 and validate the results by direct comparison with classical fluids. We use this approach to illustrate the transition from laminar to turbulent drag regime in superfluid oscillatory flows and compare the critical velocities associated to the production of quantized vortices in the superfluid component with the critical velocities for the classical instabilities occurring in the normal component. We show that depending on the temperature and geometry of the flow, either type of instability may occur first and we demonstrate their crossover due to the temperature dependence of the viscosity of the normal fluid. Our results have direct bearing on present investigations of superfluids using nanomechanical devices [Bradley et al., Sci. Rep. 7, 4876 (2017)].
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Result continuities
Project
<a href="/en/project/GA17-03572S" target="_blank" >GA17-03572S: Peculiarities of convective flows and heat transport in cryogenic helium</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physical Review B
ISSN
2469-9950
e-ISSN
—
Volume of the periodical
99
Issue of the periodical within the volume
5
Country of publishing house
US - UNITED STATES
Number of pages
17
Pages from-to
054511
UT code for WoS article
000459221500013
EID of the result in the Scopus database
2-s2.0-85061958341