Transition to quantum turbulence in oscillatory thermal counterflow of He-4
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10430349" target="_blank" >RIV/00216208:11320/21:10430349 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=2NgkRl6PLJ" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=2NgkRl6PLJ</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevB.103.134516" target="_blank" >10.1103/PhysRevB.103.134516</a>
Alternative languages
Result language
angličtina
Original language name
Transition to quantum turbulence in oscillatory thermal counterflow of He-4
Original language description
We report an experimental study of oscillatory thermal counterflow of superfluid He-4 and its transition to quantum turbulence inspired by the work of Kotsubo and Swift [ Phys. Rev. Lett. 62, 2604 (1989)]. We use a pair of transversally oriented second-sound sensors to provide direct proof that upon exceeding a critical heat flux, quantized vorticity is generated in the antinodes of the longitudinal resonances of the oscillating counterflow. Building on modern understanding of oscillatory flows of superfluid He-4 [D. Schmoranzer et al., Phys. Rev. B 99, 054511 (2019)], we re-evaluate the original data together with ours and provide grounds for the previously unexplained temperature dependence of critical velocities. Our analysis incorporates a classical flow instability in the normal component described by the dimensionless Donnelly number, which is shown to trigger quantum turbulence at temperatures below approximate to 1.7 K. This contrasts with the original interpretation based on the dynamics of quantized vortices, and we show that for oscillatory counterflow, such an approach is valid only at temperatures above approximate to 1.8 K. Finally, we demonstrate that the instabilities occurring in oscillatory counterflow are governed by the same underlying physics as those in flow due to submerged oscillators and propose a unified description of high Stokes number coflow and counterflow experiments.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Result continuities
Project
<a href="/en/project/GA20-00918S" target="_blank" >GA20-00918S: Interplay of convective heat transfer and turbulent flows with rotation in classical and quantum phases of cryogenic helium</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physical Review B
ISSN
2469-9950
e-ISSN
—
Volume of the periodical
103
Issue of the periodical within the volume
13
Country of publishing house
US - UNITED STATES
Number of pages
9
Pages from-to
134516
UT code for WoS article
000646310800004
EID of the result in the Scopus database
2-s2.0-85105075824